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Abstract

This thesis is focused on the analysis of an unsteady squeezing Casson fluid flow

between two parallel plates under the effect of Darcy Number. Further the effect

of magnetic parameter, the magnetic inclination angle, the squeeze number, the

lower plate stretching parameter, the lower suction/injection parameter and Eckert

number on the velocity and temperature are also investigated. The non-linear

partial differential equations are transformed into ordinary differential equations

by using similarity transformation. Shooting method is adopted for solving the

set of ordinary differential equations, with the help of computational software

MATLAB. It is observed that the velocity profile is an increasing function of the

Darcy number. An enhancement in the temperature profile is observed due to a

rise in the inclination of the magnetic field
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Chapter 1

Introduction

1.1 Background

Fluid is helping as a cause of life for human beings and human beings have always

interest for locating nature and fluid is an important factor of the world, so it

attracts human. Archimedes was the first who explored statics on fluid, lightness

and compose his well known rule known as the Archimedes principle, which came

out in his work. On floating bodies normally considered to be the first major

work on fluid mechanics [1]. In the fifteenth century rapid development in fluid

mechanics started. Da Vinci Leonardo acknowledged this field by observing and

recording the situation that we realize today as a fundamental law of physics;

namely the law of mass conservation. In this view, Da Vinci was the first person

who took the task of making outline of different fields of flow.

Flow property of fluid between two parallel plates have attracted many research

interests. This is due to their several applications in engineering such as food

refinement, administration model, contraction, cooling water and so on. Duwairi et

al. [2] reported the impact of squeezing parameters on the rate of heat conduction

of the squeezed thick fluid in the center of two similar plates. They observed

that the rate of hotness conduction increases and the local coefficient of friction

decelerates by increasing the squeezing parameter, whereas the heat transport

1
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charge decreases and the skin resistance volumes enhanced by an increment in the

extrusion parameter. Heat conduction and unsteady motion of nano-fluid by a

smoothly moving plate was examine by Ahmadi et al. [3]. It is discussed that the

unsteady variable perform the main role on the velocity profile which means that

velocity profile is compliment by increasing unsteady parameter.

In heat shifting process, nano-sized particles are added in base fluid to get better

thermic properties. A nano-fluid consists nano meter-sized particles called nano-

particles. Water, gasoline, ethylene glycol etc. are common base fluids. Nano-

fluid enhance the heat transmitting rate of the base fluid. Nada [4] numerically

investigate the heat transfer using different types of nano-fluid. It was noticed that

the nano-particles having high thermal conductivity outside the recirculation zones

have more enhancement in Nusselt number. Khan et al. [5] developed estimated

solutions under viscous dissipation control and velocity slip for the gripping flow

of nano-fluid.

Squeezing flow explains the motion of a droplet of material. Squeezing flow has

many applications in science i.e, rheological testing, composite material joining etc.

Bhatta et al. [6] observed the unsteady squeezing nano-fluid flow based on water

between two disks held parallel to each other. The unstable MHD gripping Eyring-

Powell fluid flow across an infinite channel was examined in Adesanya et al. [7].

They concluded that the profile of the concentration decreases with respect to the

parameter of chemical reaction. It concluded that transfering heat rate increases

by expanding the thermal radiation and channel walls than the transfering heat

rate decreases with in the heat absorption. Farooq et al. [8] presented the effect

of melting transfering heat over a Darcy pore media in the pressing nano-fluid

flux. Hayat et al. [9] reviewed the similar solution of an incompressible squeezing

micro-polar fluid flow between two disks held parallel to each other along with

magnetic effect.

Magnetohydrodynamics deals with the behaviour of electrically conducted flu-

ids and magnetic properties, such as salt water, liquid metals, electrolytes and

plasmas. Gholinia et al. [10] analysed the different internal effects like slip and
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magnetic field on Eyring-Powell fluid along with the reactions due to rotating

disk and conclude that temperature profile is decreased by increasing the Prand-

tal number. Hayat et al. [11] observed the magnetic effect on an unsteady 2D

second-degree fluid flow between two parallel disks. Jha and Aina [12] computed

an approximate solution for MHD flow of an incompressible which fluid is viscous

and to perform electrically in a vertical micro-porous channel developed by elec-

trically non-conducting vertical plates held parallel to each other in the presence

of induced magnetic effect. They noted that the fluid velocity and slip velocity is

enhanced with the effect of suction/injection parameter. It was also observed that

the volume flow rate is reduced by an increase in magnetic parameter and Hart-

mann number. Khan et al. [13] reviewed the transfering heat in the nano-fluid

flow between two plates held parallel to each other along with the magnetic effect.

They noted that the shape factor doesn’t affect the velocity of the fluid. Siddiqui

et al. [14] computed the solution by using Homotopy perturbation method of an

unsteady 2D squeezing MHD fluid flow between two plates held parallel to each

other.

Casson Fluid is a non-Newtonian fluid, first discovered by Casson [15, 16] in 1959.

It is a shear-thinning liquid of infinite viscosity at zero shear rate, a yield stress

under which the infinite shear rate does not move and zero viscosity. It has ability

to capture complex rheological properties of a fluid, unlike other simplified models

such as the power law [17] and second, third of fourth-grade models [18]. In fact,

the Casson flow model more precisely explains the flow properties of blood at low

shear levels and it passes through small blood cells [19]. So, human blood can

also be treated as a Casson fluid in the presence of several substances such as

fibrinogen, globulin in aqueous base plasma, protein, and human blood cells. On

the other hand, the flow behaviours of the Casson fluid in the presence of magnetic

field and heat transfer is also an important research area. Therefore, Khalid et

al. [20] focused on the unsteady flow of a Casson fluid past an oscillating vertical

plate with constant wall temperature under the non-slip conditions. Application of

Casson fluid flow between two rotating cylinders is performed in [21]. The effect of
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magnetohydrodynamic (MHD) Casson fluid flow in a lateral direction past linear

stretching sheet was explained by Nadeem et al. [22].

A literature survey has also reported that an evolved variant is recognized as

Brinkman Forchheimer, an expanded Darcy model. The combined convection

flow in a transparent vertical channel with heat sources at the walls was con-

cluded numerically Chen and Hadim [23]. With the impact of porosity, as Darcy

number decreases, Nusselt number is increases in the vertical flow. Similar model

for porous enclosed geometry with nano-particles in the liquid observed by Muth-

tamilselvan and Sureshkumar [24] recently considered in 2016. Conclusions are

made to find the heat transfer rate effect. Nu decreases for a small Darcy amount

whereas porosity is fixed because smaller value of Darcy number decreases the flow

conductance with the permeability in the fluid. Naqarajan and Akbar [25] inves-

tigated the computational simulation of mixed convection with nano-particles in

a square filled enclosure bisecting the travelling plate held in the centre. Higher

transfering heat rate concludes for low Darcy number due to greater porosity im-

pact on energy and momentum equation. Likewise Kumar and Gupta investigated

transfering heat and flow in non-Darcy porous media in [26, 27]. In addition, Chen

et al. [28] also discussed the fluid movement that nano-particles performed in nar-

row pipeline.

1.2 Thesis Contributions

In this thesis, a detailed review of [29] is conducted and the results have been

imitated by considering the additional impact of Darcy number and Casson fluid

parameter. In this work, through an appropriate transformation, the governing

PDEs are converted into the dimensionless ODEs. The numerical results are calcu-

lated by using the shooting technique. The impact of various physical parameters

on the flow and heat conduction are also explained using the graphs.
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1.3 Thesis Outlines

A brief overview of the content of the thesis is provided as:

In Chapter 2, we describe a few fundamental definitions and terminologies. Mor-

ever few basic laws and dimensionless physical parameters are also included.

In Chapter 3, includes a thorough analysis of [29] which considers the impact

of magnetic field effects with suction/injection between parallel plates on the un-

steady squeezing flow.

In Chapter 4, we extend the model given in [29] by considering the additional

impact of Casson fluid parameter and Darcy number in momentum equation. The

dimensionless ODEs are solved mathematically by method of shooting. Different

physical parameters are illustrated using graphs.

In Chapter 5, we recapitulate the thesis and give the conclusion from the whole

work and a proposal for the future work.

All the references used in this research work are listed in Bibliography.



Chapter 2

Fundamental Definitions and

Governing Mathematical

Statements

The purpose of this chapter is to state some simple concepts, regulatory rules and

dimensional quantities that are useful for further discussion.

2.1 Important Definitions

Definition 2.1.1. [30]

“A fluid is a material which has the ability to flow. Further, fluids are categorised

into liquids and gases. Liquids take the shape of the container while gases do not.”

Definition 2.1.2. [31]

“Fluid mechanics is defined as the science that deals with the behaviour of fluids

at rest or in motion and the interaction of fluids with solid or other fluids at the

boundaries.”

Definition 2.1.3. [30]

“Fluid static is the part of fluid mechanics, that deals with the fluid and its

characteristics at the constant position.”

6
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Definition 2.1.4. [31]

“It is the study of the motion of liquids, gases and plasmas from one place to

another. Fluid dynamics has a wide range of applications like calculating force

and moments on aircraft, mass flow rate of petroleum passing through pipelines,

prediction of weather, etc.”

Definition 2.1.5. [30]

“The nano-particles used in nano-fluids are typically made of metals, oxides, cop-

per, carbides or carbon nano-tubes.”

Definition 2.1.6. [30]

“Another class of fluid that contains nanometre-sized particles known as nano-

particles, typically made up of oxides, metals, carbon nano-tubes or carbides or

carbon nano-tubes. These are the fluids in which nano-particles are suspended in

the base fluid.”

Definition 2.1.7. [32]

“Casson fluid can be defined as a shear thinning liquid which is assumed to have

an infinite viscosity at zero rate of shear, a yield stress below which no flow occurs,

and a zero viscosity at an infinite rate of shear.”

Definition 2.1.8. [30]

“The porosity is the relationship of the volume of void space to the bulk volume

of a permeable medium. A permeable medium is often identified by its porosity.”

2.2 Physical Properties of Fluid

Definition 2.2.1. [30]

“This is the internal property of a fluid by virtue of which it offers resistance to

the flow. Mathematically it is defined as the ratio of the shear stress to the rate

of shear strain. i.e,

µ =
shear stress

shear strain
, (2.1)
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In the above definition, µ is the coefficient of viscosity or absolute viscosity or

dynamics viscosity or simply viscosity having dimension [ M
LT

]. Its unit is Pa.s =

kg
(s.m)

”

Definition 2.2.2. [30]

“The kinematic viscosity represents the ratio of dynamic viscosity µ to the density

of the fluid ρ, Mathematically can be written as

ν =
µ

ρ
, (2.2)

where ν is coefficient of viscosity. The dimension of kinematic viscosity is [L2T−1]

and its unit in SI system is m2/s.”

Definition 2.2.3. [30]

“Stress is a force acted upon a material per unit of its area and is denoted by τ .

Mathematically, it can be written as:

τ =
F

A
,

where F denote the force and A denote the area.”

Definition 2.2.4. [30]

“It is a type of stress in which the force vector acts parallel to the material surface

or the cross section of a material.”

Definition 2.2.5. [30]

“It is a type of stress in which the force vector acts perpendicular to the material

surface or the cross section of a material.”

2.3 Classification of Fluids

This section contains definition of different types of fluids.

Definition 2.3.1. [33]

“An ideal fluid is defined as the fluid which is incompressible and has no viscosity.
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It is also called inviscid fluid.

τyx = µ
du

dy
, (2.3)

where τyx is shear stress.”

Definition 2.3.2. [33]

“A fluid which is compressible in nature and contains some viscosity (µ > 0) is

said to be viscous fluid. As this fluid moves, certain amount of resistance is always

offered by the fluid.”

Definition 2.3.3. [33]

“The fluid for which the shear stress varies directly and linearly with the de-

formation rate is known as Newtonian fluid. Shear stress of Newtonian fluid is

mathematically defined as

τyx = µ
du

dy
, (2.4)

where τyx is shear stress and u denotes the x-component of velocity and µ denotes

the dynamic viscosity.” The common examples of Newtonian fluids are mercury,

water, oxygen, gas and milk.

Definition 2.3.4. [33]

“The fluids for which the shear stress does not vary linearly with the deformation

rate are known as Non-Newtonian Fluids. Mathematically, it can be expressed as

τxy ∝
(
du

dy

)m
,m 6= 1.

=⇒ τxy = ν

(
du

dy

)
, (2.5)

where µ denotes the apparent viscosity and m is the index of the flow performance.”

The common examples are toothpaste, ketchup and blood.

2.4 Types of Flow

This section is dedicated to different types of flow.
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Definition 2.4.1. [30]

“It is the deformation of the material under the influence of different forces. If the

deformation increase is continuous without any limit then the process is known as

flow.”

Several types of flow are as follow:

Definition 2.4.2. [33]

“In fluid dynamics, laminar flow occurs when a flow is in parallel/closed channel

or flat plates with no interruption between the plates. Typically, each particle has

a definite path and the particles of the path in the fluid do not cross each other.

Rising of cigarette smoke is an example of laminar flow.”

Definition 2.4.3. [33]

“When the fluid undergoes irregular fluctuation or flowing faster, this type of flow

(liquid or gas) is called turbulent flow. Turbulent flow moves randomly in any

direction and has no definite path and cannot be handled easily.”

Definition 2.4.4. [33]

“The flow in which fluid properties do not change with respect to time is called

steady flow. Mathematically it can be written as

dη∗

dt
= 0, (2.6)

where η∗ is a fluid property.”

Definition 2.4.5. [33]

“The flow that continuously changes with respect to time, is expressed as unsteady

flow. Mathematically this behaviour can be expressed as

dη∗

dt
6= 0, (2.7)

where η∗ is a fluid property.”

Definition 2.4.6. [33]

“The flow in which the material density varies during fluid flow is said to be com-

pressible flow. Compressible fluid flow is used in high-speed jet engines, aircraft,
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rocket motors also in high-speed usage in a planetary atmosphere, gas pipelines

and in commercial fields. Mathematically, it is expressed as

ρ(x, y, z, t) 6= c, (2.8)

where ‘c’ is a constant.”

Definition 2.4.7. [33]

“A type of fluid flow in which material density during the flow remains constant

is said to be incompressible flow. Mathematically, it can be expressed as

ρ(x, y, z, t) = c, (2.9)

where ‘c’ is a constant.”

Definition 2.4.8. [33]

“A flow, where the velocity of each fluid particle remains unchanged at any instant

of time is called uniform flow. Mathematically, it can be written as

∂V

∂s
= 0, (2.10)

where V is the velocity and s is the displacement.”

Definition 2.4.9. [33]

“A flow in which the velocity of fluid particles varies from point to point at a given

instant of time is known as non-uniform flow. Mathematically, it is expressed as

∂V

∂s
6= 0, (2.11)

where V is the velocity and s is the displacement in any direction.”

Definition 2.4.10. [33]

“The flow which is not bounded by the solid surface, is known as external flow.

The flow of water in the ocean or in the river is an example of the external flow.”
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Definition 2.4.11. [33]

“Fluid flow which is bounded by the solid surface. The examples of the internal

flow are the flow through pipes or glass.”

2.5 Heat Transfer Mechanism and related prop-

erties

This section provides different modes of heat transfer.

Definition 2.5.1. [30]

“It is the energy transfer due to the temperature difference. At the point when

there is a temperature contrast in a medium or between media, heat transfer must

take place. Heat transfer is normally in an object from high temperature to a

lower temperature.”

Definition 2.5.2. [30]

“Conduction is the process in which heat is transferred through the material be-

tween the objects that are in physical contact. For example: picking up a hot cup

of tea.”

Definition 2.5.3. [30]

“Convection is a mechanism in which heat is transferred through fluids (gases or

liquids) from a hot place to a cool place. For example:

• Macaroni rising and falling in a pot of boiling water,

• Streaming cup of hot tea. The steam is showing heat transferred into the air.”

Definition 2.5.4. [30]

“Forced convection is a process in which fluid motion is produced by an external

source. It is a special type of heat transfer in which fluid moves in order to increase

the heat transfer. In other words, a method of heat transfer in which heat transfer

is caused by dependent source like a fan and pump etc, is called forced convection.
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For example: gas convection heaters have a gas burner to generate the heat and

fan to force the heated air to circulate around the room.”

Definition 2.5.5. [30]

“Natural convection is a heat transport process, in which the heat transfer is not

caused by an external source, like pump, fan and suction. It happens due to the

temperature differences which affect the density of the fluid. It is also called free

convection. For example: Daily weather.”

Definition 2.5.6. [30]

“A method in which both forced and natural convection processes simultaneously

and significantly involve in the heat transfer is called mixed convection.”

Definition 2.5.7. [30]

“A process in which heat is transferred directly by electromagnetic waves is known

as radiation and it occurs when two bodies of different temperature are aligned.”

Definition 2.5.8. [31]

“A heat which is produced due to flow of current through conductor is called joule

heating. Joule heating is also known as Ohmic heating and resistive heating.”

Definition 2.5.9. [30]

“Thermal diffusivity is material’s property which identifies the unsteady heat con-

duction. Mathematically, it can be written as,

α =
k

ρCp
, (2.12)

where k, ρ and Cp represents the thermal conductivity of material, the density

and the specific heat capacity.

The SI units and dimension of thermal diffusivity are m2s−1 and [LT−1] respec-

tively.”

Definition 2.5.10. [30]

“Thermal conductivity (k) is the property of a material related to its ability to
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transfer heat. Mathematically,

dQ

dT
= −kAdT

dx
, (2.13)

where A, k, dQ
dT

, dT
dx

are the area, the thermal conductivity, the rate of heat transfer

and the temperature gradient respectively. With the increase of temperature,

thermal conductivity of the most of the liquids decreases except water.

The SI unit of thermal conductivity is Kg.m
s3.K

and its dimension is [MLT−3θ−1].”

Definition 2.5.11. [30]

“The study of the dynamics of electrically conducting fluids for example plasmas

or electrolytes, acted on by magnetic field is known as magnetohydrodynamics. It

is denoted by (MHD).”

2.6 Dimensionless Numbers

Definition 2.6.1. [30]

“It is the ratio of the convective to the conductive heat transfer to the boundary.

Mathematically,

Nu =
hL

k
, (2.14)

where h stands for convective heat transfer, L for the characteristics length and k

stands for the thermal conductivity.”

Definition 2.6.2. [30]

“The ratio between the momentum diffusivity ν and thermal diffusivity α. Math-

ematically, it can be defined as

Pr =
ν

α

=⇒ Pr =
µ

ρ
.
ρCp
k
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=⇒ Pr =
µCp
k
, (2.15)

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number.”

Definition 2.6.3. [30]

“It is a dimensionless number which is used to clarify the different flow behaviours

like turbulent or laminar flow. It helps to measure the ratio between inertial force

and the viscous force. Mathematically,

Re =
LU

ν
, (2.16)

where U denotes the free stream velocity, L the characteristics length. At low

Reynolds number, laminar flow arises where the viscous forces are dominant. At

high Reynolds number, turbulent flow arises where the inertial forces are domi-

nant.”

Definition 2.6.4. [30]

“The Richardson number was first introduced by Lewis Fry Richardson as a di-

mensionless parameter that expresses the relationship of buoyancy term with flow

shear term. It is denoted by Ri and mathematically it can be written as

Ri =
Gr

Re2
, (2.17)

where Gr represents the Grashof number and Re is the Reynolds number. Richard-

son number is used for weather forecast and in the investigation of density, lakes

oceans and reservoirs.”

Definition 2.6.5. [30]

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp5 T
, (2.18)
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where u2 is the characteristic flow velocity, Cp the specific heat and 5T is the

difference between wall temperature.”

Definition 2.6.6. [30]

“The Darcy number Da represents the effect of the permeability of medium ac-

cording to its cross sectional area.

Da =
κ

H2
, (2.19)

where κ shows the permeability of porous medium and H is the length of prescribed

geometry. It was first introduced by Henry Darcy. It is transformed by the non-

dimensionalizing differential form of Darcy’s law.”

2.7 Basic Equations

.

Definition 2.7.1. [30]

“Mass conservation law states that fluid mass can neither be created nor destroyed.

It is expressed mathematically for compressible fluids.

∂ρ

∂t
+ O.ρV = 0,

Where t is time, the fluid density is ρ, and the fluid velocity is v. When the

fluid density is unchanged the shape is provided by consistency for incompressible

liquids.”

O.V = 0

Definition 2.7.2. [30]

“The sum of a body’s mass and velocity is called the linear momentum or simply

the body’s momentum, and the momentum of a solid body with mass m travelling

at a velocity with V is mV Newton’s second law notes that the motion of a body is

equal to the total force operating on it and is inversely proportional to its speed,
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and that the rate of change in a body’s momentum is identical to the rate of

change. Therefore, if the total force acting on it is negative, the momentum of

a device stays unchanged, and therefore the energy of it is conserved. This is

regarded as the theory of the conservation of momentum.”

Definition 2.7.3. [30]

“One of the most fundamental laws in nature is the first law of thermodynamics,

also known as the conservation of energy principle. It states that energy can be

neither created nor destroyed during a process, it can only change forms. In two

dimensional system the energy equation for base fluid can be expressed as:”

v.OT = αO2T (2.20)

2.8 Solution Methodology

“Shooting method is used to solve the higher order non-linear ordinary differential

equations. To implement this technique, we first convert the higher order ODEs

to the system of first order ODEs. After that we assume the missing initial con-

ditions and the differential equations are then integrated numerically using the

Runge-Kutta method as an initial value problem. The accuracy of the assumed

missing initial condition is then checked by comparing the calculated values of

the dependent variables at the terminal point with their given value there. If

the boundary conditions are not fulfilled up to the required accuracy, with the

new set of initial conditions, then they are modified by Newtons method. The

process is repeated again until the required accuracy is achieved. To explain the

shooting method, we consider the following general second order boundary value

problem:[34]

y′′(x) = f(x, y, y′(x)) (2.21)

along with the boundary conditions

y(0) = 0, y(L) = B. (2.22)
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To have a system of first order ODEs, used the notations:

y = y1, y′ = y2. (2.23)

By using the notations (2.23) in (2.21) and (2.22) can be written as

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y1(L) = B.

 (2.24)

Choose the missing initial condition y2(0) = h we have the following IVP

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y2(0) = h.

 (2.25)

Now, the initial value problem satisfy the boundary condition y2(L) = B

y1(L, h)−B = φ(h) = 0. (2.26)

To find an approximate root of (2.26) by the Newton’s method, is written as

hn+1 = hn −
φhn
φ′hn

, (2.27)

or

hn+1 = hn −
y1(L, hn)−B
∂
∂h

[y1(L, hn)−B
. (2.28)

To implement the Newton’s method, consider the following notations

∂y1
∂h

= y3,
∂y2
∂h

= y4. (2.29)

Differentiating Eq. (2.25) with respect to h we get the following four first order ODEs along with the associated initial conditions

y′3 = y4, y3(0) = 0,

y′4 = y3
∂f

∂y1
+ y4

∂f

∂y2
, y4(0) = 1.

 (2.30)

Now, solving the IVP (2.30), we get y3 at L. This value is actually the derivative

of y1 with respect to h compute at L. Using the value of y3(L, h) in Eq. (2.28),
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the modified value of h can be achieved. This new value of h is used to solve the

(2.30) and the process is repeated until the require accuracy.”



Chapter 3

Magnetic Field Effects with

Suction/Injection between

Parallel Plates on the Unsteady

Squeezing Flow

3.1 Introduction

In this chapter the detailed analysis of S. Xiaohong and Y. Yunxing is discussed

[29]. The description of the empirical research of inclined magnetic field effects

with suction/injection between parallel on the unsteady squeezing flow is reviewed

in this study. By using suitable similarity transformations, the controlling par-

tial differential equations are converted into ordinary differential equations. The

mathematical solution for the differential equations are obtained by utilizing the

shooting technique. Graphs are represented to show the physical significance of

distinct dimensionless quantities. By varying the values of the different parame-

ters, we observed the trend of the velocity and temperature distributions.

20
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3.2 Mathematical Modeling

Considering the unsteady squeezing flow of an incompressible fluid that conducts

electrically and is squeezed between two infinite parallel plates. The lower plate

channel is along the x-axis, so it is normal to the y-axis. Here B = (Bm cos γ,

Bm sin γ, 0), is the time-variable magnetic field in which Bm denotes Bo(1− αt)
−1
2 .

H(t) = l(1− αt) 1
2 is the difference between the plates that varies with the time

t, where l is the difference between plates [35]. Geometry of flow model is in

FIGURE 3.1.

Figure 3.1: Geometry of the problem

.

The flow is described by considering the continuity, momentum equation and en-

ergy equation are as follows:

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0. (3.1)

Momentum equation for u-velocity:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+
µ

ρ

(∂2u
∂x2

+
∂2u

∂y2

)
+ (v cos γ − u sin γ)

sin γ
σB2

m

ρ
. (3.2)
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Momentum equation for v-velocity:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+
µ

ρ

( ∂2v
∂x2

+
∂2v

∂y2

)
+ u sin γ − v cos γ)

cosγ
σB2

m

ρ
. (3.3)

Energy equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=
( ∂2T
∂x2

+
∂2T

∂y2

) k

ρcp
+
[
2
( ∂u
∂x

)2
+ 2
( ∂v
∂y

)2
+( ∂u

∂y
+
∂v

∂x

)2] µ

ρcp
+
σB2

m

ρcp
(u sin γ − v cos γ)2. (3.4)

Here u is fluid motion in the direction of x and v is fluid motion in the direction

of y. The temperature is T , the total dynamic viscosity is ν, the density is ρ, the

real heat capacity of the fluid is Cp, and the thermal conductivity of the fluid is κ

respectively.

Boundary conditions of lower and upper plates are:

u = 0,

v = vH =
dH

dt
= − αl

2
√

1− αt
,

T = TH = To +

(
To

1− αt

)
at y = H(t),

u = us =
bx

1− αt
,

v = vc = − vo√
1− αt

,

T = To at y = 0.



(3.5)

Here, us denotes lower-plate stretching velocity, vc represents lower-plate mass flux

velocity, vH denotes upper-plate velocity, To is lower-plate surface temperature and

TH denotes upper-plate surface temperature.

Furthermore, similarity transformations are used to convert partial differential

equations into set of ordinary differential equations for concluding the desired

results.

By using the following dimensionless parameters. (3.1) - (3.4) are converted into
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the dimensionless form [36].

v = vHf(η),

η =
y

H(t)
,

u = vHf
′(η)
−x
H(t)

,

θ(η) =
T − To
TH − To

.


(3.6)

3.3 Dimensionless Structure of the Governing

Equations

Consider the continuity equation. By substituting (3.6) into (3.1):

∂
(
−x
H(t)

vHf
′(η)
)

∂x
+
∂
(
vHf(η)

)
∂y

= 0

Substituting vH = dH
dt

= − αl
2
√
1−αt and η = y

H(t)
in the above relation.

We obtain,

⇒ αl

2
√

1− αtH(t)
f ′(η)− αl

2
√

1− αtH(t)
f ′(η) = 0

Hence the continuity function is satisfied identically.

Now we include the following dimensionless parameters for the conversion of (3.2)

into the dimensionless form.

• u =
−x
H(t)

vHf
′(η)

=
−xη
y

( −αl
2
√

1− αt

)
f ′(η)

=
αx

2(1− αt)
f ′(η)(

∵ η =
y

H(t)
and H(t) = l

√
1− αt

)

• ∂u

∂x
=

α

2(1− αt)
f ′(η)
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• ∂2u

∂x2
= 0

• ∂u

∂y
=

αx

2l(1− αt) 3
2

f ′′(η)

• ∂2u

∂y2
=

αx

2l2(1− αt)2
f ′′′(η)

• ∂u

∂t
=

α2x

2l(1− αt)2
f ′(η) +

α2xy

4l(1− αt) 5
2

f ′′(η)

• µ

ρ

∂2u

∂y2
=

αx

2(1− αt)2

(
ν

l2

)
f ′′′

(
∵ ν =

µ

ρ

)
• B2

m = B2
o(1−αt)

• σB2
m

ρ
sin γ(v cos γ − u sin γ) =

σB2
m

ρ
sin γ

[ −αl
2
√

1− αt
f cos γ

− αx

2(1− αt)
f ′ sin γ

]
=

σB2
o

ρ(1− αt)
sin γ

[ −αl
2
√

1− αt
f cos γ

− αx

2(1− αt)
f ′ sin γ

]
• δ =

H

x
=
l(1− αt)2

x

The dimensionless form of (3.2) is:

=⇒ α2x

2l(1− αt)2
f ′(η) +

α2xy

4l(1− αt) 5
2

f ′′(η) + f ′2(η)
−α2x

4(1− αt)2
+ f(η)f ′′(η)

α2x

2(1− αt)2
= − 1

ρ

∂ρ

∂x
+
[ ν
l2

+
σB2

o

ρ
sin γ(δf cos γ + f ′ sin γ)

] αx

2(1− αt)2

=⇒
[
f ′ +

y

2l(1− αt) 1
2

f ′′ +
1

2
f ′2 − 1

2
ff ′′

] α2x

2(1− αt)2
= − 1

ρ

∂ρ

∂x

+
αx

2(1− αt)2
[ ν
l2

+
σB2

o

ρ
sin γ(δf cos γ + f ′ sin γ)

]
(3.7)

Differentiate (3.7) w.r.t y, we get:

=⇒ α2x

4(1− αt)2
1

l(1− αt) 1
2

[3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′] = − 1

ρ

∂2ρ

∂x∂y
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+
αx

2(1− αt) 5
2

ν

l3

[
f ′′′′ − σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

]
=⇒ α2x

2(1− αt)2
1

2l(1− αt) 1
2

[3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′] = − 1

ρ

∂2ρ

∂x∂y

+
αx

2(1− αt) 5
2

ν

l3

[
f ′′′′ − σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

]
=⇒ α2x

4l(1− αt) 5
2

[3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′] +
1

ρ

∂2ρ

∂x∂y
−

αx

2(1− αt) 5
2

ν

l3

[ ν
l2
f ′′′′ +

σl2B2
o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

]
= 0 (3.8)

Now we include the following derivatives for the conversion of momentum equation

(3.3) into the dimensionless form.

∂v

∂x
= 0

(
∵ v = vH = −

(
αl

2
√

1− αt

)
f(η)

)
∂2v

∂x2
= 0

∂v

∂t
=

−α2l

4(1− αt) 3
2

f(η)− αl

2
√

1− αt
∂η

∂t
f ′(η)

∂v

∂y
=

−α
2(1− αt)

f ′(η)

∂2v

∂y2
=

−αl
2
√

1− αt
∂2η

∂y2
f ′(η)− αl

2
√

1− αt

(
∂η

∂y

)2

f ′′(η)

The dimensionless form of (3.3) can be written as

⇒ −α2l

4(1− αt) 3
2

f − αl

2(1− αt) 1
2

∂η

∂t
f ′ +

α2l

4(1− αt) 3
2

ff ′) = − 1

ρ

∂p

∂y
+

ν
( ∂2v
∂x2

+
∂2v

∂y2

)
+

σB2
o

2ρ(1− αt)
cos γ

( αx

1− αt
f ′(η) sin γ +

αl√
1− αt

cos γf
)

(3.9)

Differentiating (3.9) w.r.t x, we get:

⇒ ∂

∂x

( −α2l

4(1− αt) 3
2

f − αl

2(1− αt) 1
2

∂η

∂t
f ′ +

α2l

4(1− αt) 3
2

ff ′
)

=
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− ∂p

∂y

∂

∂x

[ 1

ρ
+ ν
( ∂2v
∂y2

+
∂2v

∂x2

)
+

σB2
o

2ρ(1− αt)
cos γ

( αx

1− αt
f ′(η) sin γ

+
αl√

1− αt
cos γf

)]
⇒0 = − 1

ρ

∂2p

∂x∂y
+

σB2
o

2ρ(1− αt)2
α cos γ sin γf ′

⇒− 1

ρ

∂2p

∂x∂y
+

σB2
o

2ρ(1− αt)2
α cos γ sin γf ′ = 0

⇒ 1

ρ

∂2p

∂x∂y
=

σB2
o

2ρ(1− αt)2
α cos γ sin γf ′ (3.10)

Substituting (3.10) in (3.8) we get,

α2x

4l(1− αt) 5
2

[3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′] +
1

ρ

∂2ρ

∂x∂y
− αx

2(1− αt) 5
2

ν

l3

[
f ′′′′

+
−σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

]
=

α2x

4l(1− αt) 5
2

[3f ′′ + ηf ′′′ + f ′f ′′

− ff ′′′] +
σB2

o

2ρ(1− αt)2
α cos γ sin γf ′ − αx

2(1− αt) 5
2

ν

l3

[
f ′′′′ − σl2B2

o

ρν
sin γ

(δf ′ cos γ + f ′′ sin γ)
]

(3.11)

=⇒ α

2
(3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′)− ν

l2

[
f ′′′′ − σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

]
+

σB2
o

2ρ(1− αt)2
α cos γ sin γf ′

(
2(1− αt) 5

2

αx

)
= 0

=⇒ α

2
(3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′)− ν

l2

[
f ′′′′ − σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

]
+
σB2

o l
√

1− αt
ρx

αcosγ sin γf ′ = 0

=⇒ α

2
(3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′)− ν

l2

[
f ′′′′ − σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

]
+
σB2

oδ

ρ
cos γ sin γf ′ = 0

=⇒ αl2

2ν
(3f ′′ + ηf ′′′ − ff ′′′ + f ′f ′′)− νl2

l2ν

[
f ′′′′ − σl2B2

o l
2

ρν
(δ cos γf ′ + sin γf ′′)

sin γ
]

+
σB2

o l
2δ

ρν
cos γ sin γf ′ = 0

=⇒αl2

2ν
(3f ′′ + ηf ′′′ − ff ′′′ + f ′f ′′)− σB2

o l
2

ρν
(δf ′ cos γ + sin γf ′′) sin γ − f ′′′′

+
σB2

o l
2δ

ρν
cos γsinγf ′ = 0



Consequences of Magnetic Field on Squeezing Flow 27

where M2 = σB2
o l

2

ρν
, S = αl2

2ν
and δ = H

x
= l(1−αt)2

x
.

=⇒S(3f ′′ + ηf ′′′ − f ′′f + f ′′′f ′)− f ′′′′ +M2δ sin γf ′ cos γ +M2 sin γf ′′

+M2 sin γ cos γf ′ = 0

=⇒ f ′′′′ − S(3f ′′ − f ′′′f + ηf ′′′ + f ′′f ′)− sin γ(2δ cos γf ′ + sin γf ′′)M2 = 0

(3.12)

For the conversion of temperature equation (3.4) into an ordinary differential equa-

tion, following derivatives are evaluated:

∂v

∂y
=

−α
2(1− αt)

f ′(η)

∂v

∂x
= 0

∂u

∂x
=

α

2(1− αt)
f ′(η)

∂u

∂y
=

αx

2l(1− αt) 3
2

f ′′(η)

T = TH = To+

(
To

1− αt

)
at y = H(t)

θ(η) =
T − To
TH − To

T = To

(
1+

1

1− αt
θ(η)

)
∂T

∂t
=

αTo
(1− αt)2

θ+
αToy

2l(1− αt) 5
2

θ′

∂T

∂x
= 0

∂2T

∂x2
= 0

∂T

∂y
=

To

l(1− αt) 3
2

θ′
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∂2T

∂y2
=

To
l2(1− αt)2

θ′′

k

ρcp

∂2T

∂x2
=

k

ρcp

(
0+

To
l2(1− αt)2

θ′′
)

=
1

cp(1− αt)2
kToθ

′′

ρl2

µ

ρcp

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2]
=

ν

cp

[
2

α2

4(1− αt)2
f ′2(η)

+ 2
α2

4(1− αt)2
f ′2(η) +

( αx

2l(1− αt) 3
2

f ′′(η) + 0
)2]

=
ν

cp

[ α2

(1− αt)2
(
f ′2

+
x2

4l2(1− αt)
f ′′2
)]

=
1

cp(1− αt)

[ να2x2

4l2(1− αt)
(
4δ2f ′2 + f ′′2

)]
σB2

m

ρcp
(u sin γ − v cos γ)2 =

σB2
o

cpρ(1− αt)

[ αx

2(1− αt)
f ′(η)sinγ

+
αl

2
√

1− αt
cos γf

]2
=

1

cp(1− αt)
σB2

o

ρ

α2x2

4(1− αt)2
[
f ′2 sin2 γ

+
l2(1− αt)2

x2
f 2 cos2 γ +

2l
√

1− αt
x

ff ′ cos γ sin γ
]

Now consider the L.H.S of equation (3.4),

=⇒ ∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

αTo
(1− αt)2

θ +
αToy

2l(1− αt) 5
2

θ′ + u(0)

= −
(

αl

2
√

1− αt

)
f(η)

[
To

l(1− αt) 3
2

θ′

]
=⇒ ∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

αTo
2(1− αt)2

(2θ + ηθ′) +
αTo

2(1− αt)2
(−fθ′)

=⇒ ∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

αTo
2(1− αt)2

(2θ + ηθ′ − fθ′) (3.13)

R.H.S of equation (3.4) is;

k

ρcp

(
∂2T

∂x2
+
∂2T

∂y2

)
+

µ

ρcp

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2]
+
σB2

m

ρcp

(u sin γ − v cos γ)2 =
1

cp(1− αt)2
kToθ

′′

ρl2
+

1

cp(1− αt)

[ να2x2

4l2(1− αt)

(4δ2f ′2 + f ′′2)
]

+
1

cp(1− αt)
σB2

o

ρ

α2x2

4(1− αt)2
[
f ′2 sin2 γ +

l2(1− αt)2

x2

f 2 cos2 γ +
2l
√

1− αt
x

ff ′ cos γ sin γ
]

where H = l
√

1− αt, H2 = l2(1− αt) and δ =
H

x
.
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Hence

=⇒ k

ρcp

(
∂2T

∂x2
+
∂2T

∂y2

)
+

µ

ρcp

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
]

+
σB2

m

ρcp
(u sin γ − v cos γ)2 =

1

cp(1− αt)2

[
kTo
ρl2θ′′

+
να2x2

4l2(1− αt)
(4δ2f ′2

+ f ′′2) +
σB2

oα
2x2

4ρ(1− αt)
(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)

]
(3.14)

Combining (3.13)and (3.14);

=⇒ αTo
2(1− αt)2

[2θ + ηθ′ − fθ′] =
1

cp(1− αt)2
[ kToθ′

ρl2
+

να2x2

4l2(1− αt)

(4δ2f ′2 + f ′′2) +
σB2

oα
2x2

4ρ(1− αt)
(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)

]
=⇒ αTo

2
[2θ + ηθ′ − fθ′] =

1

cp

[ kTo
ρl2θ′′

+
να2x2

4l2(1− αt)
(4δ2f ′2 + f ′′2)

+
σB2

oα
2x2

4ρ(1− αt)
(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)

]
=⇒αTo

2
[2θ + ηθ′ − fθ′] =

ν

cpl2

[kToθ′′
ρν

+
α2x2

4(1− αt)
(4δ2f ′2 + f ′′2)

+
σB2

o l
2α2x2

4ρν(1− αt)
(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′cosγ sin γ)

]
=⇒ αTo

2
[2θ + ηθ′ − fθ′] =

ν

cpl2

[ kToθ′′
ρν

+
α2x2

4(1− αt)
(4δ2f ′2 + f ′′2)

+M2 α2x2

4(1− αt)
(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)

]
=⇒ αTo

2
[2θ + ηθ′ − fθ′] =

ν

cpl2

[ kToθ′′
ρν

+
α2x2

4(1− αt)
(4δ2f ′2 + f ′′2)

+
σB2

o l
2α2x2

4ρν(1− αt)
(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)

]
=⇒ αTo

2
[2θ + ηθ′ − fθ′] =

ν

cpl2
α2x2

4(1− αt)

[ 4kTo(1− αt)θ′′

ρνα2x2
+ (4δ2f ′2 + f ′′2)

+M2(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)
]

=⇒ cpl
2

ν

4(1− αt)
α2x2

αTo
2

[fθ′ − ηθ′ − 2θ] +
[ 4kTo(1− αt)θ′′

ρνα2x2
+ (4δ2f ′2 + f ′′2)
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=⇒ cpl
2

ν

4(1− αt)
α2x2

αTo
2

[fθ′ − ηθ′ − 2θ] +
[ 4kTo(1− αt)θ′′

ρνα2x2
+ (4δ2f ′2 + f ′′2)

+M2(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)
]

= 0

=⇒ 2cpToH
2

νx2α
[fθ′ − ηθ′ − 2θ] +

4kTo(1− αt)
ρνα2x2

[
θ′′ +

ρνα2x2

4kTo(1− αt)
(4δ2f ′2

+ f ′′2) +M2(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)
]

= 0

=⇒ 2cpToρνx
2l2(1− αt)

4kToνx2α(1− αt)
[fθ′ − ηθ′ − 2θ] +

4kTo(1− αt)
ρνα2x2

[
θ′′ +

ρνα2x2

4kTo(1− αt)

(4δ2f ′2 + f ′′2) +M2(f ′2 sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)
]

= 0

=⇒ µcpρl
2

2ρνk
[fθ′ − ηθ′ − 2θ] + θ′′ +

[ ρνα2x2

4kTo(1− αt)
(4δ2f ′2 + f ′′2) +M2(f ′2

sin2 γ + δ2f 2 cos2 γ + 2δff ′ cos γ sin γ)
]

= 0

=⇒PrS[fθ′ − ηθ′ − 2θ] +
ρνα2x2

4kTo(1− αt)
(4δ2f ′2 + f ′′2) + θ′′ +

(
f ′2 sin2 γ

+ δ2f 2 cos2 γ + 2δff ′ cos γ sin γ
)
M2 = 0 (3.15)

where;

Pr =
µcp
k

S =
αl2

2ν

Ec =
u2o

cpR2(TH − To)

R =
usδ

vH

us =
bx

1− αt

vH =
−αl

2
√

1− αt

TH−To =
To

1− αt

R =
usδ

vH

To = (TH−To)(1−αt)
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Sb =
2vo
αl

µα2x2cp
4kcpTo(1− αt)

=
µcp
k

α2x2

4cpTo(1− αt)

= Pr
α2x2u2sδ

2

4cpTo(1− αt)R2v2H

=
b2x2Pr

αcpTo(1− αt)R2

=
b2x2Pr

αcp(TH − To)(1− αt)2R2

=
Pr

cp(TH − To)R2

b2x2

(1− αt)2

=
Pru2o

cp(TH − To)R2

= PrEc

Collectively the following equation is obtained:

PrS[fθ′ − ηθ′ − 2θ] +
ρµα2x2cp

4kρcpTo(1− αt)
(4δ2f ′2 + f ′′2) + θ′′ +M2(f ′2 sin2 γ

+ δ2f 2 cos2 γ + 2δff ′ cos γ sin γ) = 0

=⇒

PrS(fθ′ − ηθ′ − 2θ) + PrEc(4δ2f ′2 + f ′′2) + θ′′ +M2(f ′2 sin2 γ + δ2f 2 cos2 γ

+ 2δff ′ cos γ sin γ) = 0 (3.16)

Finally, two ordinary differential equations are obtained with the following system:

f ′′′′ − S
(
3f ′′ + f ′′′η + f ′f ′′ − ff ′′′

)
− sin γ

(
2δ cos γf ′ + sin γf ′′

)
M2 = 0 (3.17)

=⇒PrS
(
fθ′ − ηθ′ − 2θ

)
+ PrEc

(
4δ2f ′2 + f ′′2

)
+ θ′′ +M2

(
f ′2 sin2 γ

+ δ2f 2 cos2 γ + 2δff ′ cos γ sin γ
)

= 0, (3.18)

Subject to the Boundary conditions:

f(0) = Sb, f ′(0) = R, θ(0) = 0, f(1) = 1, f ′(1) = 0, θ(1) = 1. (3.19)
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where the squeezing number is S, the prandtl number is Pr, the magnetic param-

eter is M , the Eckert number is Ec and the lower-plate stretching parameter is R.

Sb reflects a function of the lower-plate suction/injuction with Sb < 0 for damage

and Sb > 0 for suction.

The following formulation is available for various parameters used in the above

equations:

∂u

∂y
=

αx

2l(1− αt) 3
2

f ′′(η),
∂T

∂y
=

To

l(1− αt) 3
2

θ′,

vH =
−αl

2
√

1− αt
, TH − TO =

To
(1− αt)

,

Rex =
usx

ν
, us =

bx

(1− αt)
.


(3.20)

Before going towards the mathematical solution the skin friction coefficient Cf or

the shear stress and the Nusselt number Nu or heat transfer coefficient on the

lower plate surface are represented as:

Cf =
µ
(

∂u
∂y

)
y=H(t)

v2Hρ

Nu =
l
(

∂T
∂y

)
y=H(t)

TH − To

As for equation (3.6), we have:

C∗f =
αl3(1− αt) 3

2

bx3
RexCf = f ′′(1),

Nu∗ =

(
ν

b

) 1
2

x−1(Rex)
−1
2 Nu = θ′(1).

where Rex = usx
ν

represents the local Reynolds number.

=⇒Cf =
µ(∂u

∂y
)y=H(t)

ρv2H
, Nu =

1

TH − TO

(∂T
∂y

)
y=H(t)

(3.21)

The skin friction coefficient, is given as follows:
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⇒ Cf = − µxvH
ρv2H l

2(1− αt)
f ′′(η) = − µx

ρvH l2(1− αt)
f ′′(η)

⇒ Cf = − µx

ρ
(
−αl

2
√
1−αt

)
l2(1− αt)

f ′′(η)

⇒ Cf =
2µx

ραl3
√

1− αt
f ′′(η)

⇒ f ′′(η) =
ραl3
√

1− αt
µx

Cf , where y = H(t) and η = 1.

⇒ f ′′(1) =
ραl3
√

1− αt
νρx

Cf =
αl3
√

1− αt
usx
Rex

x
Cf

⇒ f ′′(1) =
αl3
√

1− αt
usx2

RexCf

⇒ f ′′(1) =
αl3
√

1− αt
bx

(1−αt)x
2
RexCf

⇒ f ′′(1) =
αl3(1− αt) 3

2

bx3
RexCf

The local Nusselt number is defined as follows:

• Nu =
1

TH − TO

(
∂T

∂y

)
y=H(t)

⇒ Nu =
1

TH − TO
To

l(1− αt) 3
2

θ′(η)

⇒ Nu =
1

TH − TO
(TH − TO)

1

l(1− αt) 1
2

θ′(η)

⇒ Nu =
1

l(1− αt) 1
2

θ′(η),

where y = H(t) and η = 1.

⇒ θ′(1) = l(1− αt)
1
2Nu

⇒ θ′(1) =
l(bx)

1
2

(us)
1
2

Nu(1− αt)
1
2

⇒ θ′(1) =
(bx)

1
2

(us)
1
2

Nu

⇒ θ′(1) =
l(bx)

1
2

(Rexν
x

)
1
2

Nu
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3.4 Numerical Treatment

This section is dedicated to the implementation of the shooting method to solve the

transformed ODEs (3.17) and (3.18) subject to the Boundary Conditions (3.19).

One can easily observe that (3.18) is independent of variable θ, hence (3.17) is

first solved by using the shooting technique. For this purpose, following notations

are used:

f = y, f ′ = y′, f ′′ = y′′, f ′′′ = y′′′, f ′′′′ = y′′′′.

Further denote

y = y1, y′ = y′1 = y2, y′′ = y′2 = y3, y′′′ = y′3 = y4, y′′′′ = y′4.

Equations are,

y′1 = y2; y1(0) = Sb =
2vo
αl

,

y′2 = y3; y2(0) = R =
usδ

vH
,

y′3 = y4; y3(0) = α1,

y′4 = S(3y3 + ηy4 + y2y3 − y1y4) +M2sinγ(2δcosγy2 + sinγy2);

y4(0) = α2.



(3.22)

In the above system of equations the missing conditions α1 and α2 are to be chosen

such that:

y4(η, α1, α2)η=1 − 1 = 0,

y5(η, α1, α2)η=1 − 1 = 0.

Now

y3(0) = y′′(0) = α1, y4(0) = y′′′(0) = α2.
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The Newton method is used to solve algebraic equations system and has the fol-

lowing iterative scheme:

un+1

vn+1

 =

un
vn

−
 ∂y1

∂α1

∂y1
∂α2

∂y2
∂α1

∂y2
∂α2

−1
y1(1)− 1

y2(1)− 0

 (3.23)

Further use the notations:

∂y1
∂α1

= y5,
∂y2
∂α1

= y6,
∂y3
∂α1

= y7,
∂y4
∂α1

= y8,

∂y1
∂α2

= y9,
∂y2
∂α2

= y10,
∂y3
∂α2

= y11,
∂y4
∂α2

= y12.

As the result of these new notations, the Newton’s iterative scheme gets the form:

un+1

vn+1

 =

un
vn

−
y5 y9

y6 y10

−1
y1(1)− 1

y2(1)− 0

 (3.24)

Now differentiate the above system of four first order ODEs (3.22) with respect to

each of the variables α1 and α2 to have another system of eight ODEs . Writing

all these twelve ODEs together, the following IVP has:

y′1 = y2; y1(0) = Sb =
2vo
αl
,

y′2 = y3; y2(0) = R =
usδ

vH
,

y′3 = y4; y3(0) = α1,

y′4 = S(3y3 + ηy4 + y2y3 − y1y4) +M2sinγ

(2δcosγy2 + sinγy2); y4(0) = α2,

y′5 = y6; y5(0) = 0,

y′6 = y7; y6(0) = 0,

y′7 = y8; y7(0) = 0,

y′8 = S(3y7 + ηy8 + y5y3 − y5y4 + y2y7 − y1y8)

+M2 sin γ(2δ cos γy6 + sin γy7); y8(0) = 0,
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y′9 = y10; y9(0) = 0,

y′10 = y11; y10(0) = 0,

y′11 = y12; y11(0) = 0,

y′12 = S(3y11 + ηy12 + y10y3 − y9y4 + y2y11 − y1y12)

+M2 sin γ(2δ cos γy10 + sin γy11); y12(0) = 0.

The fourth order Runge-Kutta procedure is used to solve the above system of

twelve equations with α1 and α2 initial guess. Such estimates are modified by the

scheme of the Newton. The iterative method is performed before the conditions

here are met:

max
[
| α1

n+1 − α1
n |, | α2

n+1 − α2
n |
]
< ε

for an arbitrarily small positive value of ε . Throughout this chapter ε has been

taken as (10)−6

Since (3.17) and (3.18) are coupled equations. So (3.18) will be solved seperately

by incorporating the solution of (3.17). For this purpose let us denote:

y1 = θ, y′1 = y13 = θ′, y′2 = y14 = θ′′.

to get the following first order ODEs.

y′13 = y2; y13(0) = 0,

y′14 = −
[
PrS(fy2 − ηy2 − 2y1) + PrEc

(
f ′′2 + 4δ2f ′2+

M2(f ′2 sin2 γ + f 2δ2 cos2 γ + 2δff ′ cos γ sin γ)
)]

; y14(0) = m.


(3.25)

The above IVP is solved numerically by Runge-Kutta strategy of the fourth order.

In the above initial value problem, the missing condition m is to be chosen such
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that:

y13(η,m)η=1 − 1 = 0, (3.26)

To solve the above algebraic equation (3.26) the Newton’s method is used which

has the following iterative scheme:

mn+1 = mn −
(∂y13
∂m

)−1(
y13(η,m

n)η=1 − 1
)
.

Further considering the following derivatives:

∂y13
∂m

= y15,
∂y14
∂m

= y16.

to formulate the following Newton’s iterative scheme:

mn+1 = mn −
[
y15(η,m

n)η=1

]−1
y13(η,m

n)η=1 − 1. (3.27)

Here n is the number of iterations (n = 0,1,2,3...).

Now differentiate the above system of two first order ODEs (3.26) with respect to

m to have another system of four ODEs . Writing all these four ODEs together,

the following IVP has:

y′13 = y2; y13(0) = 0,

y′14 = −PrS(D1y2 − ηy2 − 2y1)− PrEc
[
D2

3 + 4δ2D2
2

+M2(D2 − 2 sin2 γ +D2
1δ

2 cos2 γ + 2δD1D2 cos γ sin γ)
]
; y14(0) = m,

y′15 = y4; y15(0) = 0,

y′16 = −PrS(D1y4 − ηy4 − 2y3); y16(0) = 1.

The RK-4 method has been used to solve the IVP consisting of the above four

ODEs for some suitable choices of m. The missing condition m is updated by

using Newtons scheme (3.27). If the following criterion is fulfilled the iterative

process is stopped:

| mn+1 − rm | < ε
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for an arbitrarily small positive value of ε. Throughout this chapter ε was taken

as (10)−6.

3.5 Results with discussion

In this section, the numerical results are displayed graphically to perceive the

physical properties of flow more transparently. The variation in the velocity and

temperature profiles are represented in graphs below, by varying the parameter

of the lower-plate stretching, the angle of inclination, the magnetic parameter,

the squeeze number, the Eckert number and the parameter of the lower-plate suc-

tion/injuction.

Figure 3.2 and Figure 3.3 displays the influence of the squeeze number S for the

temperature θ(η) and velocity profile f ′(η). FIGURE 3.2 shows the influence of

S on the profile of velocity. Remember that the velocity of the fluid decreases by

growing the squeezing parameter values. Figure 3.3 indicates that decreased in S

causes a decrease in fluid temperature across parallel plates.

Figure 3.4 and Figure 3.5 demonstrate the velocity and temperature profile of the

fluid with different magnetic parameter values. From Figure 3.4, it is noticed that

a particular time, a rising magnetic parameter causes the fluid’s velocity to in-

crease in regions similar to the upper or lower plates, while the fluid’s velocity in

the central region indicates an obvious decrease. The fluid in the central area has

a higher velocity relative to the viscous fluid plates and it is found from Figure

3.5 that temperature rises with magnetic parameter change. Moreover, the tem-

perature of the fluid decreases from the lower to the upper plate area while the

parameter of the magnetic field is small. The fluid temperature offers maximum

values for larger magnetic parameter values not on the upper plate area but in

the middle area between the walls. However, stronger magnetic fields naturally

influence the temperature distribution.

Figure 3.6 and Figure 3.7 represent the velocity and temperature behaviours by

rising the inclination angle of the magnetic field applied, respectively. The angles
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of magnetic inclination vary between 0 and π/2. Related velocity and tempera-

ture patterns were obtained from the two estimates as applied to the corresponding

velocity and temperature profiles with specific magnetic parameter values. The

influencing of the inclination angle on both fluid temperature and velocity profile

is close to the magnetic parameters.

Figure 3.8 and Figure 3.9 illustrate the impact on dimensionless temperature of

the lower-surface and velocity of stretching parameter, respectively. Figure 3.8

indicates that the fluid velocity near the lower plate rises in order to raise the

magnitude of the lower-plate stretching function while the velocity of the fluid

near the upper-plate falls with the fluid. Since the parameter for lower-plate

stretching is increasing gradually, the fluid with the velocity of maximum value

does not appear in the central area between the plates, but on the lower-plate side.

Figure 3.9 shows that the increasing lower-plate stretching velocity is initially de-

creases fluid temperature below the lower-plate.

Figure 3.10 and Figure 3.11 depicts the lower-plate suction/injection affect on

temperature profile and velocity profile, respectively. Figure 3.10 indicates that

for the lower-plate injection/suction function, the velocity profile is rising. The

fluid with peak velocity will not occur in the central area when extending the

lower-plate for better suction across the lower-plate and the velocity of the fluid

decreases from the lower-plate area to the upper-plate. Temperature profiles de-

crease as the injection/suction parameter increases. In particular, it is found out

that when the injection/suction parameter Sb falls in the central area, the fluid

has high temperature could not occur at the upper-plate area between the two

plates.

In Figure 3.12 by the increment of Eckert number their is rise in temperature

profile. It is obvious the temperature rises to raise Eckert number values. Joule

heating and viscous dissipation is due to Ec, which significantly increases the fluid

temperature between two surfaces. Figure 3.12 also indicates that the maximum

fluid temperature for the larger Eckert number occurs in the central area between

the two plates and for the smaller Eckert number it exists on the upper plate side.

In Figure 3.13 and Figure 3.14 the results of the magnetic field’s inclination angle,
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the squeeze number on the skin friction coefficient and the Nusselt number are

displayed. It is noticed that the Nusselt number is decreasing function of inclina-

tion angle of magnetic field and on the contrary to this total value of skin friction

coefficient raises by the effect of γ.

Figure 3.2: Influence of S on f ′(η). when
R = M = 0.5, Pr = 1.0, γ = π

6 and Ec = δ = Sb = 0.1

Figure 3.3: Impact of S on θ(η). when
R = M = 0.5, Pr = 1.0, γ = π

6 and Ec = δ = Sb = 0.1
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Figure 3.4: Impact of M on f ′(η). when
R = 0.2, S = 0.5, Pr = 1.0, γ = π

4 , Ec = 0.3 and δ = Sb = 0.1

Figure 3.5: Impact of M on θ(η). when
R = 0.2, S = 0.5, Pr = 1.0, γ = π

4 , Ec = 0.3 and δ = Sb = 0.1
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Figure 3.6: Impact of γ on f ′(η). when
R = 0, S = 0.5, Pr = 1.0, M = 3.0, Ec = 0.3 and δ = Sb = 0.1

Figure 3.7: Impact of γ on θ(η). when
R = 0, S = 0.5, Pr = 1.0, M = 3.0, Ec = 0.3 and δ = Sb = 0.1
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Figure 3.8: Impact of R on f ′(η). when
S = 0.5, M = 3.0, Pr = 1.0, γ = π

4 , Ec = 0.6 and δ = Sb = 0.1

Figure 3.9: Influence of R on θ(η). when
M = 3.0, S = 0.5, Pr = 1.0, γ = π

4 , Ec = 0.3 and δ = Sb = 0.1
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Figure 3.10: Influence of Sb on f ′(η). when
R = Ec = 0.3, M = 3.0, Pr = 1.0, γ = π

4 , δ = 0.1 and S = 0.5

Figure 3.11: Impact of Sb on θ(η). when
R = Ec = 0.3, M = 2.0, Pr = 1.0, γ = π

4 , δ = 0.1 and S = 0.5
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Figure 3.12: Influence of Ec on θ(η). when
R = 0.3, M = 2.0, Pr = 1.0, γ = π

4 , Sb = δ = 0.1 and S = 0.5

Figure 3.13: Effect of S on C∗f . when
R = 0.5, M = 3.0, Pr = 1.0, γ = π

2 and Sb = δ = Ec = 0.1
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Figure 3.14: Effect of S on N∗. when
R = 0.5, M = 3.0, Pr = 1.0, γ = π

2 and Sb = δ = Ec = 0.1



Chapter 4

An Unsteady Squeezing Casson

Fluid Flow Under the Effect of

Darcy Number

4.1 Introduction

The major goal of this section is to extend the model of [37] by considering the

additional effect of the parameter Darcy number Da and Casson fluid parameter

β on the unstable squeezing flow of an incompressible electrically conductive fluid

contained between two infinite parallel walls. The non-linear partial differential

equations of heat and momentum are changed into a set of ordinary differential

equations through effectively transforming similarities. Using the shooting pro-

cess, numerical solutions are obtained. The impact of different physical parameter

values is discussed and the observations are in outstanding structure. The nu-

merical computed effects of different parameters on the dimensionless velocity and

temperature are calculated and presented in the form of graphs.

47
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4.2 Mathematical Modeling

A Darcy number Da and Casson fluid β parameter, along with the inclined mag-

netic field effect has been considered on the unsteady squeezing flow of an electri-

cally conductive incompressible fluid confined between two infinite parallel plates.

The lower plate of the channel is along the x-axis and the y-axis is normal to it.

B = (Bm cos γ,Bm sin γ, 0), is the time-variable magnetic field in which Bm de-

notes Bo(1− αt)
−1
2 , is applied at an inclination angle γ with respect to the x-axis.

The distance between two plates is H(t) = l(1− αt) 1
2 changes with the time t,

where l at the time t = 0 is the initial distance between the plates [35].

Flow model geometry is shown in FIGURE 4.1

Figure 4.1: Geometry of the problem

.

Equation of continuity, equation of momentum and the equation of energy are

given as:

Continuity equation:
∂u

∂x
+
∂v

∂y
= 0. (4.1)
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Momentum equation for u-velocity:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+
µ

ρ

(
1 +

1

β

)(∂2u
∂x2

+
∂2u

∂y2

)
+ (cos γv − sin γu)

sin γ
σB2

m

ρ
− µu

ρKp

(4.2)

Momentum equation for v-velocity:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+
µ

ρ

(
1 +

1

β

)( ∂2v
∂x2

+
∂2v

∂y2

)
+ sin γu− cos γv)

cosγ
σB2

m

ρ
− νu

ρKp

(4.3)

Energy equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=
( ∂2T
∂x2

+
∂2T

∂y2

) k

ρcp
+
[
2
( ∂u
∂x

)2
+ 2
( ∂v
∂y

)2
+( ∂u

∂y
+
∂v

∂x

)2] µ

ρcp
+
σB2

m

ρcp
(u sin γ − v cos γ)2. (4.4)

Here u is fluid motion in the direction of x and v is fluid motion in the direction

of y. The temperature is T , the total dynamic viscosity is ν, the density is ρ, the

real heat capacity of the fluid is Cp, and the thermal conductivity of the fluid is κ

respectively. Lower and upper plate boundary conditions are based on:

u = 0,

v = vH =
dH

dt
= − αl

2
√

1− αt
,

T = TH = To +

(
To

1− αt

)
at y = H(t),

u = us =
bx

1− αt
,

v = vc = − vo√
1− αt

,

T = To at y = 0.



(4.5)

Here, us denotes lower-plate stretching velocity, vc represents lower-plate mass flux
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velocity, vH denotes upper-plate velocity, To is lower-plate surface temperature and

TH denotes upper-plate surface temperature.

4.3 Dimensionless Structure of the Governing

Equations

By using following dimensionless parameters (4.1) - (4.4) are transformed into the

dimensionless form.

v = vHf(η),

η =
y

H(t)
,

u = vHf
′(η)
−x
H(t)

,

θ(η) =
T − To
TH − To

.


(4.6)

The detailed procedure for the verification of the continuity equation (4.1) has

been discussed in Chapter 3. The conversion of (4.2) - (4.4) into dimensionless

form is described into the upcoming discussion.

Following derivatives are calculated for the conversion of (4.2) into the dimension-

less form.

• u =
−x
H(t)

vHf
′(η)

=
−xη
y

( −αl
2
√

1− αt

)
f ′(η)

=
αx

2(1− αt)
f ′(η)(

∵ η =
y

H(t)
and H(t) = l

√
1− αt

)

• ∂u

∂x
=

α

2(1− αt)
f ′(η)

• ∂2u

∂x2
= 0
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• ∂u

∂y
=

αx

2l(1− αt) 3
2

f ′′(η)

• ∂2u

∂y2
=

αx

2l2(1− αt)2
f ′′′(η)

• ∂u

∂t
=

α2x

2l(1− αt)2
f ′(η) +

α2xy

4l(1− αt) 5
2

f ′′(η)

• µ

ρ

∂2u

∂y2
=

αx

2(1− αt)2

(
ν

l2

)
f ′′′

(
∵ ν =

µ

ρ

)
• B2

m = B2
o(1− αt)

• σB
2
m

ρ
(v cos γ − u sin γ) sin γ =

σB2
m

ρ
sin γ

[ −αl
2
√

1− αt
f cos γ

− αx

2(1− αt)
f ′ sin γ

]
=

σB2
o

ρ(1− αt)
sin γ

[ −αl
2
√

1− αt
f cos γ

− αx

2(1− αt)
f ′ sin γ

]
• δ =

H

x
=
l(1− αt)2

x

• Da =
Kp

H2

• Kp = DaH2

• µu

pKp

=
µxα

2Dal2ρ(1− αt)2
f ′(η)

• µv

pKp

=
−αν

2Dalρ(1− αt) 3
2

f

Using the above expression L.H.S of (4.2) yields:

=⇒∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

α2x

2l(1− αt)2
f ′(η) +

α2xy

4l(1− αt) 5
2

f ′′(η)

+
−α2x

4(1− αt)2
f ′2(η) +

α2x

2(1− αt)2
f(η)f ′′(η)

=⇒ ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

α2x

2(1− αt)2
[
f ′ +

y

2l(1− αt) 1
2

f ′′ +
1

2
f ′2 − 1

2
ff ′′

]
(4.7)

Now consider R.H.S of (4.2) and using the above relations, we get

− 1

ρ

∂p

∂x
+
µ

ρ

(∂2u
∂x2

+
∂2u

∂y2

)
+
σB2

m

ρ
sin γ(v cos γ − u sin γ) = −1

ρ

∂ρ

∂x
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+
αx

2(1− αt)2
[ ν
l2

+
σB2

o

ρ
(δf cos γ + f ′ sin γ) sin γ − µ

Dal2ρ
f ′(η)

]
(4.8)

Differentiate w.r.t ’y’ of equation (4.7).

=⇒ ∂u

∂t
+
∂u

∂x
u+

∂u

∂y
v =

α2x

2(1− αt)2
1

2l(1− αt) 1
2

[3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′]

=⇒ ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

α2x

4l(1− αt) 5
2

[3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′] (4.9)

Differentiate w.r.t ’y’ of equation (4.8).

=⇒ ∂

∂y

[
− 1

ρ

∂p

∂x
+
µ

ρ

( ∂2u
∂x2

+
∂2u

∂y2

)
+
σB2

m

ρ
sin γ(v cos γ − u sin γ)

]
=

− 1

ρ

∂2ρ

∂x∂y
+

αx

2(1− αt)2
1

l(1− αt) 1
2

[ ν
l2
f ′′′′ − σB2

o

ρ
sin γ(δf ′ cos γ

+ f ′′ sin γ)− µ

Dal2p
f ′(η)

]

=⇒ = − 1

ρ

∂2ρ

∂x∂y
+

αx

2(1− αt) 5
2

ν

l3

[
f ′′′′ − σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

− 1

Da
f ′′(η)

]
(4.10)

Hence combining equations (4.9) and (4.10), we get:

=⇒ α2x

4l(1− αt) 5
2

[3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′] +
1

ρ

∂2ρ

∂x∂y
− αx

2(1− αt) 5
2

ν

l3

[ ν
l2
f ′′′′

+
σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)− 1

Da
f ′′(η)

]
= 0 (4.11)

Now we include the following dimensionless parameters for the conversion of

momentum equation(4.3) into the dimensionless form.

• ∂v

∂x
= 0

(
∵ v = vH = −

(
αl

2
√

1− αt

)
f(η)

)

• ∂2v

∂x2
= 0
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• ∂v

∂t
=

−α2l

4(1− αt) 3
2

f(η)− αl

2
√

1− αt
∂η

∂t
f ′(η)

• ∂v

∂y
=

−α
2(1− αt

f ′(η)

• ∂2v

∂y2
=

−αl
2
√

1− αt
∂2η

∂y2
f ′(η)− αl

2
√

1− αt

(
∂η

∂y

)2

f ′′(η)

• µv

pKp

=
−αν

2Dalρ(1− αt) 3
2

f

The dimensionless form of (4.3) can be written as;

−α2l

4(1− αt) 3
2

f − αl

2(1− αt) 1
2

∂η

∂t
f ′ +

α2l

4(1− αt) 3
2

ff ′ = −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+

σB2
o

2ρ(1− αt)
cos γ

( αx

(1− αt)
f ′(η) sin γ +

αl√
1− αt

cos γf
)
− −αν

2Dalρ(1− αt) 3
2

f

Dimensionless form of L.H.S of (4.3) is;

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

−α2l

4(1− αt) 3
2

f − αl

2(1− αt) 1
2

∂η

∂t
f ′ +

α2l

4(1− αt) 3
2

ff ′

(4.12)

Taking derivative w.r.t ‘x’ of equation (4.12)

=⇒ ∂

∂x

( ∂v
∂t

+
∂v

∂x
u+

∂v

∂y

)
v = 0 (4.13)

Dimensionless form of R.H.S of (4.3) is;

− 1

ρ

∂p

∂y
+
µ

ρ

(∂2v
∂x2

+
∂2v

∂y2

)
+
σB2

m

ρ
(u sin γ − v cos γ) cos γ − −αν

2Dalρ(1− αt) 3
2

f

= −1

ρ

∂p

∂y
+

(
∂2v

∂x2
+
∂2v

∂y2

)
ν +

σB2
o

2ρ(1− αt)
cos γ

[ αx

(1− αt)
f ′(η) sin γ

+
αl√

1− αt
cos γf

]
− −αν

2Dalρ(1− αt) 3
2

f (4.14)

Taking derivative w.r.t ‘x’ of equation (4.14).

∂

∂x

[
− 1

ρ

∂p

∂y
+
µ

ρ

(∂2v
∂x2

+
∂2v

∂y2

)
+
σB2

m

ρ
(u sin γ − v cos γ) cos γ

]
= −1

ρ

∂2p

∂x∂y

+
σB2

o

2ρ(1− αt)2
α cos γ sin γf ′ (4.15)

Combining equation (4.13) and (4.15).



Numerical Analysis of Squeezing Flow with Darcy Number and Casson Fluid 54

− 1

ρ

∂2p

∂x∂y
+

σB2
o

2ρ(1− αt)2
α cos γ sin γf ′ = 0

⇒ 1

ρ

∂2p

∂x∂y
=

σB2
o

2ρ(1− αt)2
α cos γ sin γf ′ (4.16)

Putting (4.16) in equation (4.11) we get,

α2x

4l(1− αt) 5
2

[3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′] +
1

ρ

∂2ρ

∂x∂y
− αx

2(1− αt) 5
2

ν

l3

[
f ′′′′

+
−σl2B2

o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)

]
=

α2x

4l(1− αt) 5
2

[3f ′′ + ηf ′′′

+ f ′f ′′ − ff ′′′] +
σB2

o

2ρ(1− αt)2
α cos γ sin γf ′ − αx

2(1− αt) 5
2

ν

l3

[(
1 +

1

β

)
f ′′′′

− σl2B2
o

ρν
sin γ(δf ′ cos γ + f ′′ sin γ)− 1

Da
f ′′(η)

]
(4.17)

=⇒ α

2
(3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′)− ν

l2

[(
1 +

1

β

)
f ′′′′ − σl2B2

o

ρν
sin γ(δf ′ cos γ

+ f ′′ sin γ)
]

+
σB2

oδ

ρ
cos γ sin γf ′ +

1

Da
f ′′(η) = 0,

=⇒ αl2

2ν
(3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′)− νl2

l2ν

[(
1 +

1

β

)
f ′′′′ − σl2B2

o l
2

ρν

sin γ(δf ′ cos γ + f ′′ sin γ)
]

+
σB2

o l
2δ

ρν
cos γ sin γf ′ +

1

Da
f ′′(η) = 0,

where M2 = σB2
o l

2

ρν
, S = αl2

2ν
and δ = H

x
= l

√
1−αt
x

.

=⇒ αl2

2ν
(3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′)−

(
1 +

1

β

)
f ′′′′ − σB2

o l
2

ρν

(δ cos γf ′ + sin γf ′′) sin γ +
σB2

o l
2δ

ρν
cos γsinγf ′ +

1

Da
f ′′(η) = 0,

=⇒ S(3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′)−
(

1 +
1

β

)
f ′′′′ +M2sinγδf ′ cos γ

+M2f ′′ sin γ +M2 cos γ sin γf ′ +
1

Da
f ′′(η) = 0, (4.18)

Final form of ordinary differential equation is:
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(
1 +

1

β

)
f ′′′′ − S(3f ′′ + ηf ′′′ + f ′′f ′ − f ′′′f)−M2(2δ cos γf ′ + sin γf ′′) sin γ

− 1

Da
f ′′(η) = 0.

(4.19)

Subject to the boundary conditions:

f(0) = Sb, f ′(0) = R, θ(0) = 0, f(1) = 1, f ′(1) = 0, θ(1) = 1. (4.20)

where the squeezing number is S, the prandtl number is Pr, the magnetic pa-

rameter is M , the Eckert number is Ec and the lower-plate stretching parameter

is R. Sb reflects a function of the lower-plate suction/injuction with Sb < 0 for

damage and Sb > 0 for suction. The following formulation is available for various

parameters used in the above equations:

∂u

∂y
=

αx

2l(1− αt) 3
2

f ′′(η),
∂T

∂y
=

To

l(1− αt) 3
2

θ′,

vH =
−αl

2
√

1− αt
, TH − TO =

To
(1− αt)

,

Rex =
usx

ν
, us =

bx

(1− αt)
.


(4.21)

Before going towards the mathematical solution the skin friction coefficient Cf or

the shear stress and the Nusselt number Nu or heat transfer coefficient on the

lower plate surface are represented as:

Cf =
µ
(

∂u
∂y

)
y=H(t)

ρv2H

Nu =
l
(

∂T
∂y

)
y=H(t)

TH − To

From equation (4.6),

C∗f =
αl3(1− αt) 3

2

bx3
RexCf = f ′′(1),

Nu∗ =

(
ν

b

) 1
2

x−1(Rex)
−1
2 Nu = θ′(1),



Numerical Analysis of Squeezing Flow with Darcy Number and Casson Fluid 56

where Rex = usx
ν

represents the local Reynolds number.

Hence

Cf =
µ
(
∂u
∂y

)
y=H(t)

ρv2H
, Nu =

1

TH − TO

(∂T
∂y

)
y=H(t)

(4.22)

⇒ Cf = − µxvH
ρv2H l

2(1− αt)
f ′′(η) = − µx

ρvH l2(1− αt)
f ′′(η)

⇒ Cf = − µx

ρ
(
−αl

2
√
1−αt

)
l2(1− αt)

f ′′(η)

⇒ Cf =
2µx

ραl3
√

1− αt
f ′′(η)

⇒ f ′′(η) =
ραl3
√

1− αt
µx

Cf , where y = H(t) and η = 1.

⇒ f ′′(1) =
ραl3
√

1− αt
νρx

Cf =
αl3
√

1− αt
usx
Rex

x
Cf

⇒ f ′′(1) =
αl3
√

1− αt
usx2

RexCf

⇒ f ′′(1) =
αl3
√

1− αt
bx

(1−αt)x
2
RexCf

⇒ f ′′(1) =
αl3(1− αt) 3

2

bx3
RexCf

The local number Nusselt is defined as follows:

• Nu =
1

TH − TO

(
∂T

∂y

)
y=H(t)

⇒ Nu =
1

TH − TO
To

l(1− αt) 3
2

θ′(η)

⇒ Nu =
1

TH − TO
(TH−TO)

1

l(1− αt) 1
2

θ′(η)

⇒ Nu =
1

l(1− αt) 1
2

θ′(η), where y = H(t) and η = 1

⇒ θ′(1) = l(1− αt)
1
2Nu

⇒ θ′(1) =
l(bx)

1
2

(us)
1
2

Nu, (1−αt)
1
2 =

(bx)
1
2

(us)
1
2
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⇒ θ′(1) =
l(bx)

1
2

(Rexν
x

)
1
2

Nu

4.4 Numerical Treatment

This section is focused on the implementation of the shooting method to solve

the transformed ODE (4.19) subject to the Boundary Conditions (4.21). For this

purpose, we first transform the system of higher order ODEs into first order ODEs.

Let us use the notations:

f = y, f ′ = y′, f ′′ = y′′, f ′′′ = y′′′, f ′′′′ = y′′′′. (4.23)

Further denote

y = y1, y
′ = y′1 = y2, y

′′ = y′2 = y3, y
′′′ = y′3 = y4, y

′′′′ = y′4.

Equations are,

y′1 = y2; y1(0) = Sb =
2vo
αl

,

y′2 = y3; y2(0) = R =
usδ

vH
,

y′3 = y4; y3(0) = α1,

y′4 = S(3y3 + ηy4 + y2y3 − y1y4) +M2sinγ(2δcosγy2 + sinγy2);

y4(0) = α2.


(4.24)

In the above system of equations the missing conditions α1 and α2 are to be chosen

such that

y4(η∞, α1, α2) = 0,

y5(η∞, α1, α2) = 0.

Now

y3(0) = y′′(0) = α1, y4(0) = y′′′(0) = α2.
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To solve the system of algebraic equations we use the Newtons method which has

the following iterative scheme:

un+1

vn+1

 =

un
vn

−
 ∂y1

∂α1

∂y1
∂α2

∂y2
∂α1

∂y2
∂α2

−1
y1(1)− 1

y2(1)− 0

 (4.25)

Now use the following notations:

∂y1
∂α1

= y5,
∂y2
∂α1

= y6,
∂y3
∂α1

= y7,
∂y4
∂α1

= y8,

∂y1
∂α2

= y9,
∂y2
∂α2

= y10,
∂y3
∂α2

= y11,
∂y4
∂α2

= y12.

As the result of these new notations, the Newton’s iterative scheme gets the form:

un+1

vn+1

 =

un
vn

−
y5 y9

y6 y10

−1
y1(1)− 1

y2(1)− 0

 (4.26)

Now differentiate the above system of four first order ODEs with respect to each

of the variables α1 and α2 to have another system of eight ODEs. Writing all these

twelve ODEs together, we have the following IVP:

y′5 = y6; y5(0) = 0,

y′6 = y7; y6(0) = 0,

y′7 = y8; y7(0) = 0,

y′8 =
β

(1 + β)

[
S(3y7 + ηy8 + y5y3 − y5y4 + y2y7 − y1y8)

+M2 sin γ(2δ cos γy6 + sin γy7) +
1

Da
y7
]
; y8(0) = 0,

y′9 = y10; y9(0) = 0,

y′10 = y11; y10(0) = 0,

y′11 = y12; y11(0) = 0,

y′12 =
β

(1 + β)

[
S(3y11 + ηy12 + y10y3 − y9y4 + y2y11 − y1y12)

+M2 sin γ(2δ cos γy10 + sin γy11) +
1

Da
y11

]
; y12(0) = 0.
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The fourth Runge-Kutta method is used to solve the twelve equations system

above with α1 and α2 initial guess. Such estimates are modified by the scheme of

the Newton. The iterative method is performed before the conditions here are met:

max
[
| α1

n+1 − α1
n |, | α2

n+1 − α2
n |
]
< ε

for an arbitrarily small positive value of ε . Throughout this chapter ε has been

taken as (10)−6.

4.5 Results with discussion

The numerical effects are presented in this section in the form of graphs. Using

curves, variation is measured in the linear velocity and temperature curves. Figure

(4.2)-(4.15) contains variables such as the squeezing number, magnetic parame-

ter, lower-plate stretching parameter, magnetic tilt angle, Darcy number, Eckert

number, Casson fluid parameter and Lower-plate suction/injuction parameter.

Figure 4.2 and Figure 4.3 display the influence of the squeeze number on the tem-

perature θ(η) and the velocity profile f ′(η). Figure 4.2 shows the influence of S

on the profile of velocity. Remember that the velocity of the fluid decreases by

growing the squeezing parameter values. Figure 4.3 indicates that decreased in S

causes a decrease in fluid temperature across parallel plates.

Figure 4.4 and Figure 4.5 display the velocity and temperature profile of the fluid

with different magnetic parameter values. It is observed that Figure 4.4, it is no-

ticed that a particular time, a rising magnetic parameter causes the fluid’s velocity

to increase in regions similar to the upper or lower plates, while the fluid’s velocity

in the central region indicates an obvious decrease. In the central area the fluid

has a higher velocity as compared to the surface fluid. The fluid in the central

area has a higher velocity relative to the viscous fluid plates and it is found from
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Figure 4.5 that temperature rises with magnetic parameter change. Moreover, the

temperature of the fluid decreases from the lower to the upper plate area while the

parameter of the magnetic field is small. The fluid temperature offers maximum

values for larger magnetic parameter values not on the upper plate area but in

the middle area between the walls. However, stronger magnetic fields naturally

influence the temperature distribution.

Figure 4.6 and Figure 4.7 represent the velocity and temperature behaviours by

rising the inclination angle of the magnetic field applied, respectively. The angles

of magnetic inclination vary between 0 and π/2. Related velocity and tempera-

ture patterns were obtained from the two estimates as applied to the corresponding

velocity and temperature profiles with specific magnetic parameter values. The

influencing of the inclination angle on both fluid temperature and velocity profile

is close to the magnetic parameters.

Figure 4.8 and Figure 4.9 illustrate the impact on dimensionless temperature of

the lower-surface and velocity of stretching parameter, respectively. Figure 4.8

indicates that the fluid velocity near the lower plate rises in order to raise the

magnitude of the lower-plate stretching function while the velocity of the fluid

near the upper plate falls with the fluid. Since the parameter for lower-plate

stretching is increasing gradually, the fluid with the velocity of maximum value

does not appear in the central area between the plates, but on the lower-plate side.

Figure 4.9 shows that the increasing lower-plate stretching velocity is initially de-

creases fluid temperature below the lower-plate.

Figure 4.10 and Figure 4.11 depicts the lower-plate suction/injection affect on tem-

perature profile and velocity profile, respectively. Figure 4.10 indicates that for the

lower-plate injection/suction function, the velocity profile is rising. The fluid with

peak velocity will not occur in the central area when extending the lower-plate for

better suction across the lower-plate, and the velocity of the fluid monotonically
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decreases from the lower-plate area to the upper-plate. Temperature profiles in-

crease as the injection/suction parameter decreases. In particular, it is found out

that when the injection/suction parameter Sb falls in the central area, the fluid

has high temperature could not occur at the upper-plate area between the two

plates.

In Figure 4.12 by the increment of Eckert number their is rise in temperature

profile. It is obvious the temperature rises to raise Eckert number values. Joule

heating and viscous dissipation is due to Ec, which significantly increases the fluid

temperature between two surfaces. Figure 4.12 also indicates that the maximum

fluid temperature for the larger Eckert number occurs in the central area between

the two plates and for the smaller Eckert number it exists on the upper plate side.

In Figure 4.13 the magnetic inclination angle on the skin friction coefficient, the

squeeze number and the Nusselt number are seen as the magnetic inclination an-

gle ranges between 0 and π
2
, respectively. It can be seen that as Nusselt number

decreases its function, the absolute value of the skin friction coefficient increases.

In addition , the number of squeezes allows the absolute value of the skin friction

coefficient as well as the number of Nusselt to increase for the fixed magnetic in-

clination angle.

Figure 4.14 demonstrates the velocity profile behaviour, illustrated by increasing

Casson fluid parameter values on the velocity. The parameter in Casson fluid

ranges from 0.1 to 1.0. From Figure 4.14 shows that the velocity increases with

growing of Casson fluid parameter, the velocity of fluid increases when the values

of Casson fluid is large.

Figure 4.15 display the velocity behaviour by increasing Darcy number values.

The Darcy number ranges from 2.0 to 8.0. From Figure 4.15 velocity profile is

observed to increase with Da increase, the fluid velocity increases when the values

of Da is large.
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Figure 4.2: Impact of S on f ′(η).
R = M = 0.5, Pr = 1.0, γ = π

6 , Da = 2.0 and β = δ = Sb = Ec = 0.1

Figure 4.3: Impact of S on θ(η).
R = M = 0.5, Pr = 1.0, γ = π

6 , Da = 2.0, β = 0.1 and β = δ = Sb = Ec = 0.1
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Figure 4.4: Impact of M on f ′(η). when
R = 0.2, S = 0.5, Pr = 1.0, γ = π

4 , Ec = 0.3, Da = 2.0 and Sb = β = δ = 0.1

Figure 4.5: Influence of M on θ(η). when
R = 0.2, S = 0.5, Pr = 1.0, γ = π

4 , Ec = 0.3, Da = 2.0 and Sb = β = δ = 0.1
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Figure 4.6: Impact of γ on θ(η). when
R = 0, S = 0.5, Pr = 1.0, M = 3.0, Ec = 0.3, Da = 2.0 and Sb = β = δ = 0.1

Figure 4.7: Influence of γ on θ(η). when
R = 0, S = 0.5, Pr = 1.0, M = 3.0, Ec = 0.3, Da = 2.0 and Sb = β = δ = 0.1
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Figure 4.8: Influence of R on f ′(η).
S = 0.5, M = 3.0, Pr = 1.0, γ = π

4 , Ec = 0.6, Da = 2.0 and Sb = β = δ = 0.1

Figure 4.9: Impact of R on θ(η). when
M = 3.0, S = 0.5, Pr = 1.0, γ = π

4 , Ec = 0.3, Da = 2.0 and Sb = β = δ = 0.1



Numerical Analysis of Squeezing Flow with Darcy Number and Casson Fluid 66

Figure 4.10: Influence of Sb on f ′(η).
R = Ec = 0.3, M = 3.0, Pr = 1.0, γ = π

4 , Da = 2.0, β = δ = 0.1 and S = 0.5

Figure 4.11: Influence of Sb on θ(η).
R = Ec = 0.3, M = 2.0 = Da, Pr = 1.0, γ = π

4 , β = δ = 0.1 and S = 0.5
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Figure 4.12: Influence of Ec on θ(η).
R = 0.3, M = 2.0 = Da, Pr = 1.0, γ = π

4 , S = 0.5 and β = Sb = δ = Ec = 0.1

Figure 4.13: Effect of S on C∗f .
R = 0.5, M = 3.0, Pr = 1.0, γ = π

2 , Da = 2.0 and β = Sb = δ = Ec = 0.1
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Figure 4.14: Impact of β parameter on f ′(η).
R = 0.2, M = 3.0, Pr = 1.0, γ = π

4 , S = 0.5 and β = δ = Sb = Ec = 0.1

Figure 4.15: Impact of Da on f ′(η).
R = 0.2, M = 3.0, Pr = 1.0, γ = π

4 , S = 0.5 and β = δ = Sb = Ec = 0.1
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Chapter 5

Conclusion

Firstly, the research and examination of the impact of magnetic fields on squeezing

flow was performed to investigate the effects of inclination angle γ and secondly

Darcy number and Casson flow is investigated by considering the inclined mag-

netic field effect in the velocity equations. us is stretching velocity lower plate, vc

denote mass flux velocity of lower plate, vH represent velocity of upper plate, To

denotes lower plate surface temperature, TH is the upper plate surface tempera-

ture, Nu denote Nusselt number and Cf is the skin friction. The non-linear PDEs

of mass transfer, momentum and energy changed into ODEs by utilizing a proper

similarity transformation. By using the shooting method, numerical solution of

these modeled ODEs is obtained. The fundamental points are described below.

• There is enhancement of fluid velocity in the regions close to the inner bound-

aries of plates, while in the centre of plates the velocity decreases due to increase

in squeeze number.

• The squeeze number increases or the suction/injection parameter decreases the

temperature of fluid.

• As magnetic parameter M , Eckert number Ec or γ increases their is enhance-

ment in temperature profile.

• The temperature and velocity profile of the fluid close to the lower plate shows

an opposite behaviour as compared to the fluid near the upper plate.

• By raising the Casson fluid parameter the velocity profile increases.
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